Subjects: Program

 

Name of the subject: ADVANCED SOLID STATE


Program of the subject:


1. Magnetism, Quantum Magnetism and Magnetic Materials
2. Superconductivity and superconductive materials. High Tc superconductivity.
3. Effective Hamiltonians: Hubbard, Heisenberg and t-J
4. Other strongly correlated electron systems: 'Heavy Fermions'


Bibliography:

. Assa Auerbach, "Interacting Electrons and Quantum Magnetism", Springer Verlag, 1994.
. Peter Fulde, "Electron Correlations in Molecules an Solids", 3d extended edition, Springer, 1995.
. J.R. Waldram, "Superconductivity of Metals and Cuprates", Institute of Physics Publishing, Bristol, 1996.
. L-P Lévy, "Magnétisme et supraconductivité", CNRS Éditions, 1997.
. Robert J. Cava, "Oxide Superconductors", J. Am. Ceram. Soc 83, 5 (2000).
. Elbio Dagotto, "High Temperature Superconductors: A Review", Recent Progress in Many-Body Theories, V. 4, E. Schachinger et al. (eds.9, Plenum Press, 1995)




Name of the subject:
CRITICAL PHENOMENA AND RENORMALIZATION GROUP


Program of the subject:


1- Introduction to phase transitions. Critical exponents. Ising model
2- Landau theory. Mean field exponents
3- Renormalization group in real space. Ising models in 1 and 2 dimensions. Scaling laws
4- Gaussian model. Transformations in real space. Transformations in moment space.
5- General properties of the renormalization group. Clasification of operators. Hyperscaling relations. Monte Carlo renormalization group
6- Perturbative renormalization group. Expansion in the number of dimensions


Bibliography:

- The Theory of Critical Phenomena, J. Binney et al. Oxford U.P. (1992)
- Scaling and Renormalization in Statistical Physics, J.Cardy, Cambridge U.P.(1996)
- S.K.Ma, Modern Course of Critical Phenomena, Benjamin-Cummins (1976)
- M. Fisher, Critical Phenomena, Lecture Notes in Physics, Vol 186, Springer-Verlag (1983).




Name of the subject: GROWTH PHENOMENA IN CONDENSED MATTER


Program of the subject:


1. Introduction: Experimental results
2. Surface and interface thermodynamics. Crystaline growth
3. Dynamical models and methods
4. Phase transitions dynamics: Nucleation and spin decomposition
5. Domains growth: Dynamic scaling laws
6. Directional solidification
7. Roughening
8. Structure growth in elastic, magnetic systems, ...


Bibliography:

- Solids far from equilibrium, Ed. By C. Godréche, Cambridge U.P., 1992
- A. Onuki, Phase Transition Dynamics, Cambridge U.P., 2002




Name of the subject: QUANTUM PHENOMENA IN SOLIDS. NANOELECTRONICS


Program of the subject:


1. Elementary excitations in solids. Quantum treatment: quasielectrons, phonons, plasmons, excitons and magnons
2. Electron gas in magnetic fields. Landau levels. Quantum Hall effect: integral and fractional
3. Quantum dots in magnetic fields. Electronic structure and excitations
4. Quantum nanoelectronics: physics of semiconductive heterostructures. Quantum wells and quantum wires. Transport in diffusive and balistic regime
5. Semiconductors lasers. LED's. Optoelectronic devices. Quantum cascade lasers
6. Band theory applications in artificial periodic systems: photon-crystals


Bibliography:

- N.W. Aschcroft i N.D. Mermin. Solid State Physics. Holt, Rinehart ans Winston (1973)
- L. Jacak, P. Hawrylack i A. Wojs. Quantum Dots, Springer (1998)
- P.L. Taylor i O. heinonen, A quantum approach to condensed matter physics, Cambridge (2002)
- J.H. Davies, The Physics of low-dimensional semiconductors. Cambridge (1998)
- H. Ehrenreich i D. Trunbull, Eds. Solid State Physics Vol 44. Academic Press (1991)




Name of the subject: SOFT CONDENSED MATTER PHYSICS


Program of the subject:


1. Introduction to soft condensed matter: interactions, structure, thermodynamical phases and mesophases
2. Dynamics of complex fluids: hydrodynamical interactions, rheology and viscoelasticity
3. Applications: polimerical systems, coloidal systems and liquid crystals
4. Supramolecular autoassembly: Autoensamblaje supramolecular: sistemas amfifílicos y membranas.
5. Interfacial properties and "wetting" phenomena


Bibliography:

· R.A.L. Jones, Soft Condensed Matter, Oxford University Press, Oxford (2002)
· R.G. Larson, The Structure and Rheology of Complex Fuids, Oxford University Press, New York (1999)
· M. Daoud y C.E. Williams eds., Soft Matter Physics, Springer, Berlin (1995)
· M. Doi, Introduction to Polymer Physics, Clarendon Press, Oxford (1996)




Name of the subject: NANOSCALE PHYSICS


Program of the subject:


. Introduction to electron transport theory in the nanoscale
. Landauer-Büttiker formalism.
. Density functional theory
. Molecular electronics
. Applications: nanotubes, molecular chains, nanoemissors, nanosensors, etc
. Instrumental techniques in the nanoscale


Bibliography:

. S. Datta, "Electronic Transport in Mesoscopic systems". Cambridge Univ. Press., Cambridge, 1995.
. Y. Imry, "Introduction to mesoscopic physics". 2nd ed. Oxford Univ. Press, Oxford, 2002.
. M.A. Reed, T. Lee, "Molecular Nanoelectronics". Amer. Scientific Pub., 2003




Name of the subject: COMPLEX SYSTEMS PHYSICS


Program of the subject:


1.- Introduction to complexity and its modelling
2.- Physical modelling of biological systems
3.- Glassy Systems and optimization


Bibliography:

1.- The Origins of Order: Self-Organization and Selection in Evolution, S.A. Kauffman, Oxford University Press, 1993.
2.- Molecular biophysics, M.Daume, Oxford Univesity Press, 1999
3.- Spin Glass Theory and Beyond, M. Mezard, G. Parisi and M.A. Virasoro, World Scientific 1987
4.- An Introduction to Econophysics: Correlations and Complexity in Finance, R.N. Mategna i H.E. Stanley, Cambridge University Press, 1999




Name of the subject: NUCLEAR PHYSICS AND ASTROPHYSICS


Program of the subject:


1. Nucleon-nucleon interaction in the vacuum. General properties. Phenomenological potentials, meson exchange potentials (OBEP), and potentials obtained from effective theories.
2. Nucleon-nucleon interaction in the nuclea r medium. Brueckner theory (G matrix). Phenomenological effective interactions.
3. Mean field description of nuclear structure. Hartree-Fock method. Pairing correlations and long range correlations (RPA).
4. The equation of state of nuclear matter. Applications in Astrophysics. Structure of neutron stars and protostars.


Bibliography:

- J.D. Walecka, "Theoretical Nuclear and Subnuclear Physics", Oxford University Press, 1995
- J.M. Eisenberg, W. Greiner, "Nuclear Theory" (vols. I, II, III)
- P. Ring, P. Schuck, "The Nuclear Many-Body Problem", Springer-Verlag, 1980
- S.L. Shapiro, S.A. Teukolsky, "Black Holes, White Dwarfs and Neutron Stars", Wiley, 1983
- N.K. Glendenning, "Compact Stars", Springer-Verlag, 2000




Name of the subject: GALAXY FORMATION AND EVOLUTION


Program of the subject:


- Gravitatory instability
- Analitical models of halo formation
- Semianalitical models of galaxy formation
- Galaxy morphological abundances at different z's
- Galactic evolution mechanisms
- Quimical element abundancies at different z's. Ly-alfa clouds and intracumular gas
- Quimical evolution of galaxies: models
- Connexion quimical evolution - galaxy dynamical evolution


Bibliography:

"Cosmology. The Origin and Evolution of Cosmic Structure". Ed. Coles, P. and Lucchin, F. Wiley & Sons. 1996.
"Cosmological Physics". Peacock, J.A. Cambridge University Press. 1999
"Supernovae and Nucleosynthesis". Arnett. D.




Name of the subject: NON-LINEAR PHYSICS


Program of the subject:


1. Introduction
2. Instabilities in thermal convection
3. Other instabilities
4. Low dimensional dynamic systems
5. Structure formation in space extended systems


Bibliography:

- P. Mannevile, "Dissipative structures and weak trulence", Academic Press, 1990
- D. Walgraef, "Spatio-temporal pattern formation", Springer, 1997
- P.G. Drazin i W.H. Reid, "Hydronamic stability", Cambridge University Press, 1981




Name of the subject: RADIATION INTERACTION AND TRANSPORT


Program of the subject:


1 - Interactions of charged particles with matter. Dispersion
2 - Interaction of photons. Rayleig and Compton dispersion. Photoelectric effect. Pair creation
3 - Radiation transport. Electron and photon avalanches. Transport equation. Multiple dispersion. Monte Carlo simulation
4 - Applications. Electron spectroscopies. Electronic microscopy and microanalysis. Answer simulation of radiation detectors. Medical physics. Dosimetry.


Bibliography:

- Monte Carlo Transport of Electrons and Photons, T. Jenkins et al, Plenum, New York, 1998.
- Penelope-A Code System for Monte Carlo Simulation of Electron and Photon Transport, F. Salvat et al, OECD Nuclear Energy Agency, Issy-les-Moulineaux, 2001.




Name of the subject: ADVANCED STATISTICAL MECHANICS


Program of the subject:


1.- Statistical field theory: Symmetries, order parameters and models
2.- Perturbative methods: High and low temperature expansions. Self-consistent approximations. Migdal-Kadanoff procedure.
3.- Spontaneous symmetry breaking. Goldston modes. Mermin-Wagner theorem. Aplications: magnetism, superfluidity, superconductivity and elasticity. Study of the sigma non-linear model
4.- Topological defects: XY model. Dislocations in solids. Phase transitions of the Kosterlitz-Thouless type
5.- Langevin theory. Correlation functions, response and fluctuation-disipation theorem
6.- Dynamic formalisms. Martin-Siggia-Rose functional method. Coupling mode theory. Applications: critical dynamics and spin decomposition


Bibliography:

1.- K. Huang, "Statistical mechanics", Wiley, New York, 1987.
2.- P. Chaikin y T. Lubensky, "Principles of Condensed Matter Physics" (Cambridge University Press, Cambridge, 1995).
3.- G. Parisi, "Statistical Field Theory", Addison-Wesley, New York, 1998.
4.- D. Foster, "Hydrodynamic fluctuations, broken symmetry and correlation functions", Addison-Wesley, Reading Mass, 1983.




Name of the subject: NUMERICAL METHODS IN CONDENSED MATTER


Program of the subject:


1.- Monte Carlo methods: clusters algorithms. Multicanonic methods. Quantum Monte Carlo
2.- Molecular dynamics methods. Constrains. Colectivities. Molecular dynamics out of equilibrium
3.- Numerical techniques. Exact calculations of the partition function. Transference matrix. Perturbative techniques and resumation of series. Numerical resolution integral ecuations
4.- Other methods. Optimization algorithms. Kinetic equations. Finit elements methods


Bibliography:

1.- Understanding molecular simulation: From algorithms to applications. D. Frenkel and B. smit, Acdemic Press, Sand diego 1996
2.- M.P. allen and T.J. Tildesley, computer simulation of liquids, Oxford University Press, 1987
3.- M.E.J. Newman and G.T. Barkema, Monte Carlo Methods in Statistical Physics, Oxford University Press, 1999
4.- M. Thijssen, Computational Physics, Cambridge Universiti Press 2001




Name of the subject: STANDARD MODEL


Program of the subject:


1- QCD. Lagrangian and symmetries
2- Perturbative QCD
3- Deep inelastic colisions. Scale violations. Altarelli-Parisi equations
4- Electroweak theory
5- Spontaneous breaking and mass generation
6- Renormalization of the electroweak theory. Measures of precision
7- Beyond the Standard Model


Bibliography:

- "An introduction to quantum field theory", M.Peskin i D.Schroeder, Addison-Wesley (1995)
- "Gauge theories of the strong, weak and electromagnetic interactions", C.Quigg, Benjamin-Cummings (1983)
- "Weak interactions and modern particle physics", H.Georgi, Benjamin-Cummings (1984)
- "Gauge theories of elementary particle physics", T.Cheng i L.Li, Oxford U.P. (1988)
- "Dynamics of the Standard Model", J.F. Donoghue, e. golowich, B. Holstein, Cambridge U.P. (1998)
- "Quantum Field Theory", G. Sterman, Cambridge U.P. (1993)
- "Weak Interactions of leptons and quarks", E. Commins, P. Bucksbaum, Cambridge U.P. (1983)




Name of the subject: METHODS OF NUMERICAL SIMULATION


Program of the subject:


1- Basic concepts of statistical inference
2- Monte Carlo method. Generation of distributions and integration
3- Simulation in Equilibrium Statistical Mechanics. Monte Carlo methods, molecular dynamics and Langevin
4- Simulation in Statistical Mechanics out of Equilibrium. Domain growth. DLA
5- Neuronal nets and genetic algorithms


Bibliography:

- M.P. Allen, T.J. Tildesley, Computer simulation of liquids, Oxford University Press, 1987.
- D. W. Heermann, Computer simulation methods in theoretical physics, Springer Verlag, 1986.
- K. Binder & D. W. Heermann, Monte Carlo method in Statistical Physics, Springer Verlag, 1988.
- S. Jain, Monte Carlo simulation in disorderd systems, World Scientific, 199




Name of the subject: ELEMENTARY PARTICLES


Program of the subject:


1. Despcription and detection of elementary particles
2. Accelerators
3. Montecarlo methods
4. Rellevant experiments: discovery of the top quark and neutrin oscillation
5. Discrete symmetries: CP violation
6. Quark model: group theory
7. Parton model and asymptotic freedom
8. Low energy QCD. Effective theories
9. Fermi theory of weak desintegrations


Bibliography:

D. Perkins, "Introduction to high-energy physics", Addison Wesley (1987)
T. Ferbel (ed), "Experimental techniques in high-energy, nuclear and particle physics", Word Scientific (1991)
F. Halzen, A. Martin, "Quarks and Leptons: an introductory course in modern particle theory", Wiley (1984)
J. Donoghue, E. Golowich, B. Holstein, "Dynamics of the Standard Model", Cambridge U.P. (1992)
H. Georgi, "Lie algebra in particle physics", Benjamin-Cumming (1982)
L.B. Okun, "Leptons and quarks", North-Holland (1982)





Name of the subject: PARTICLES AND COSMOLOGY


Program of the subject:


I. Particles
I.1 Clasification of Elementary Particles
I.2. Basic facts of the Standard Model of Elementary Particles
I.3. Beyond the Standard Model. Introduction to Grand Unification
II. Cosmology
II.1 The Cosmological Principle
II.2. Cosmological Standard Model. Friedman-Lemaître-Roberton-Walker universes
II.3. Present measures of the cosmological parameters
II.4: Problems of the Cosmological Standard Model
III. From the Early Universe to the Present Universe
III.1 Thermodynamics of the Early Universe. Nucleosyntesis
III.2. Thermic relics of the Early Universe. Dark matter
III.3. Phase transitions in the Early Universe
III.4. The inflacionary paradigm. Different models
III.5. Dark matter, dark energy and Elementary Particle Physics
III.6. The microwave background radiation
III.7. Introduction to structure formation


Bibliography:

" Cosmology and Particle Astrophysics", L. Bergstrom, A. Goobar (John Wiley & Sons, 1999, updated edition 2003)
" Introduction to Elementary Particles", Griffith (Wiley, 1987)
"Quarks and Leptons", Halzen & Martin (Wiley, 1984)
"Principles of Physical Cosmology", Peebles (Princeton Univ. Press, 1993)
"The Early Universe", Kolb & Turner (Addison-Wesley, 1990)
"Cosmological Physics", J. Peacock (Cambridge Univ. Press, 1999)
"Particle Astrophysics", Klapdor-Kleingrothaus & Zuber (IOP, 1993)
"The Cosmic Microwave Background", Lachièze & Gunzig (Cambridge U., 1999)
"Structure Formation in the Universe", Padmanabhan (Cambridge U, 1993)





Name of the subject: ADVANCED GENERAL RELATIVITY


Program of the subject:


1. Preliminar considerations about gravitation
2. Symmetries in General Relativity: Lie derivatives, isometries, Killing vectors. Examples of interest
3. Space-time structure at great scale: tetrades and Newman-Penrose formalism
4. Petrov clasification of the curvature tensor
5. Black holes: horizonts, singularities, theorems. Known black holes. Atmospheric data
6. Cosmological model of FRW: Universe parameters and their determination. Observational evidences
7: Gravitational waves: sources, propagation and detection. Gravitational telescopes


Bibliography:

- S.W. Weinberg, "Gravitation and Cosmology", Wiley 1972.
- R.M. Wald, "General Relativity", Univ Chicago Press 1984
- H. Stephani, "General Relativity" Cambridge Univ Press 1983
- S- Cjamdraseljar. "Mathematical Theory of Black Holes", Univ Chicago Press 1983
- B.F. Schutz, "A first course on General Relativity", Cambridge Univ Press 1985
- C.M. Will, "Theory and experiment in Gravitation Physics, Cambridge Univ Press 1993
- P.J.E. Peebles, "Principles of Physical Cosmology", Princeton Univ Press 1993





Name of the subject: QUANTUM FIELD THEORY


Program of the subject:


1 Canonic quantization: free fields
a) Non-relativistic fields
b) Scalar field
c) Dirac field
d) Electromagnetic field
2. Interaction: regularization and renormalization
3. Applications


Bibliography:

- "An Introduction to Quantum Field Theory". M.E. Peshkin, D.V. Shroder
- "Quantum Field Theory". C. Itzykson, J.B. Zuber. McGraw-Hill 1980





Name of the subject: QUANTUM N-BODY THEORY


Program of the subject:


1. Variational formulation for strong correlated bosonic anf fermionic systems. Excitation spectrum and dynamical structure function. Applications: Liquid helium and nuclear matter
2. Perturbation theory. Short reach correlations and G matrix. Brueckner-Hartree-Fock approximation. Aplications: . Aplicaciones: Liquid helium and nuclear matter
3. Long reach correlations. Linear response and RPA approximation. Sum rules. Applications: Liquid helium, nuclear matter and electron gas
4. Energy density formalism
5. Dilute bosonic and fermionic systems. Bose-Einstein condensation (BEC). Coupling and BCS theory


Bibliography:

- "Quantum theory of may-particle systems", A. Fetter i J. Walecka, McGraw-Hill (1971)
- "Introduction to modern theories of quantum many-body theory and their applications". Series in Advances in Quantum many-Body Theory. Vol. 7. World Scientific (2002)
- "The theory of quantum liquids", D. Pines i P. Nozieres, Addison-Wesley (1990)
- "Density Functional Theory", R.M. Dreizler and E.K.U. Gross. Springer-Verlag, Berlin (1990)





Name of the subject: GAUGE THEORIES


Program of the subject:


1) Renormalizable and non-renormalizable theories
2) Regularization techniques
3) Renormalization of QED
4) Gauge symmetries in general: abelian and non-abelian
5) Functional Calculus revision of TQC. Extension to fermions
6) Functional quantization: Faddeev-Popov method
7) Ward identities and BRST identities. Anomalies
8) Renormalization squemes
9) Renormalization group. Callan-Symanzik equation
10) Supersymmetry
11) Introduction to String Theory


Bibliography:

1.- An Introduction to Quantum Field Theory, M. Peskin and D. Schroeder (Addison-Wesley, 1996)
2.- Introduction to Quantum Field Theory, G. Sterman (Cambridge U, 1993)
3.- Introduction to Gauge Field Theory, D. Bailin and A. Love (Institute of Physics Publishing, 1986; Revised in 1993)
4.- Quantum Field Theory, L. Ryder (Cambridge U, 1985; Revised, 1995)
5.- Field Theory, a Modern Primer, P. Ramond (Benjamin/Cummings, 1981; Revised 1995)
6.- Quarks, Leptons and Gauge Fields, K. Huang, (World Scientific, 1992)
7.- Gauge Theories of Elementary Particles, T.P. Cheng and L.F. Li (Claredon Press, Oxford, 1986)
8.- Supersymmetric Gauge Field Theory and String Theory, D. Bailin and A. Love (Institute of Physics Publishing, 1996)





Name of the subject: SELF-ORGANIZATION IN OUT-OF-EQUILIBRIUM SYSTEMS


Program of the subject:


I. Termodinámica del No Equilibrio
1. Introducción a la Termodinámica de los Procesos Irreversibles.
2. Estados estacionarios lejos del equilibrio.
II. Teoría Matemática de la Información
3. Introducción a la Teoría Matemática de la probabilidad Discreta.
4. Flujo de información entre dos sistemas generales asimilables a sendas fuentes de información.
III Síntesis: El concepto general de evolución para sistemas que intercambian materia, energía e información con su entorno.
5. La Identidad Fundamental: complejidad más anticipación igual a incertidumbre más acción.


Bibliography:

Yourgrau, W, A. van der Merwe, G. Raw. Treatise on irreversible and Statistical Thermodynamics, an Introduction to Nonclassical Thermodynamics. The Macmillan Co.
Bobrow, L, M. Arbib. Discrete Mathematics. Hemisphere Pu Co, 1974.
McEliece, J. Robert, The Theory of Information and Coding. Addison-Wesley Pu Co, London, 1987.
Thomson, D'Arcy W., On Growth and Form: A New Edition, Cambridge University Press, 1942.
Masoliver J. y J. Wagensberg, Introducció a la teoria de la probabilitat i de la informacio, Biblioteca Universitaria 31, Edicions Proa, 1966.
Wagensberg, J. L'Entropia del llenguatge. Revista de Catalunya, 3, 22-34, 1986.
Wagensberg J., J. Valls & J. Bermúdez Biological Adaptation and the Mathematical Theory of Information, Bulletin of Mathematical Biology, 50, 445-464, 1988.
Lurié, D. & Wagensberg J. On Biomass Diversity in Ecology, Bulletin of Mathematical Biology, 45, 287-293, 1983.
Lurié, D. & Wagensberg J. An Extremal Principle for the Biomass Diversity in Ecology, en Thermodynamic and Regulation of Biological Principles, I. Lamprecht y A.I.Zotin (eds) Berlin Gruyter 1985.
Lurié, D. J. Valls & Wagensberg J. Thermodynamic Approach to Biomass Distribution in Ecolgical Systems, Bulletin of Mathematical Biology, 45, 869-872, 1983.
Wagensberg J. & Valls, J. The [Extended] Maximum Entropy Formalism and the Statistical Structure of Ecosystems, Bulletin of Mathematical Biology, 49, 531-538, 1987.
Robert E. Ulanowicz. Ecology, The Ascendent Perspective. Columbia University Press, 1997.
Wagensberg, J. García, a. y Solé, R.V., Energy Flow-Networks and the Maximum Entropy Formalism, en Maximum Entropy and Bayesian Methods, ed. by W.T. Grandy, Kluwer Academic Publishers, 1991.
Wagensberg, J. (1982) Patterns in Nonequilibrium Organization. En Selforganization and Dissipative Structures. The University of Texas Press 14 (239).
Glansdorff, P y I. Prigogine, Structure, stabillité et fluctuations, Masson, 1971.
J. Wagensberg and R Pastor, Entropy of Form and Hierarchic Organization. C.R. Smith et al (eds). Maximum Entropy and Bayesian Methods, Seattle, 1991, 141-151, Luwer Academic Publishers, 19
E. Jaynes, Information theory and statistical mechanics, Physical review, 108, pp. 171-190, 1957.
Pastor Satorras, R y J. Wagensberg, Branch distribution in diffusion-limited aggregation: a maximum entropy approach, Physica A 224 (463-479), 1996.
Pastor Satorras, R y J. Wagensberg, The maximum entropy principle and the nature of fractals, Physica A 251 (291-302), 1998.





Name of the subject: INTRODUCTION TO BIOPHYSICS


Program of the subject:


1.Introducció
2. Biofísica molecular
3. Biofísica cel.lular.
4. Tècnicas experimentals en biofísica.
5. Temes avançats.


Bibliography:

1.- P. Nelson, Biological Physics: Energy, Information, Life (W.H. Freeman and Co., 2004)
2.- M. Daune, Molecular Biophysics, Oxford University Press 1999
3.- Physics of Biomolecules and Cells, Les Houches Session LXXV, EDP Sciences: Springer Verlag (2002)
4.- C. R. Calladine and H. Drew, Understanding DNA (Academic London 1997)
5.- J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, Sinauer Press: Sunderland, Massachusetts (2001)
6.- J. D. Watson et al, Molecular Biology of the Gene, 5th Ed, Benjamin Cummings (2004)